
art news

art stakeholders meeting
2 April 2019



SciSoft team efforts

It’s been a while since the last art stakeholders meeting. So that you are
aware, our current efforts include:

Building and preparing releases for art and LArSoft
Multi-threading improvements to LArSoft code
Working on Spack/SpackDev, which seeks to replace UPS and
cetbuildtools/mrb
Experiment CPU usage profiling

Despite our LArSoft-centric focus right now, we still support the other
art-using experiments and projects. The implementation of new features
is delayed.

2/4 2 April 2019 | art news



art::Ptrs (1)
art::Ptrs provide a persistable means of referring to product elements. They are expensive. If
you do not need to persist a reference, do not use an art::Ptr. Recently discovered in code:

double dist(art::Ptr<Pos> const& a, art::Ptr<Pos> const& b) {
double const dx = b->x - a->x; // 2 expensive dereferences
double const dy = b->y - a->y; // 2 more expensive dereferences
double const dz = b->z - a->z; // Yet 2 more expensive dereferences
return std::sqrt(dx*dx + dy*dy + dz*dz);

}

Better:

double dist(art::Ptr<Pos> const& a, art::Ptr<Pos> const& b) {
auto const& a_pos = *a; // 1 expensive dereference
auto const& b_pos = *b; // 1 expensive dereference
double const dx = b_pos.x - a_pos.x;
double const dy = b_pos.y - a_pos.y;
double const dz = b_pos.z - a_pos.z;
return std::sqrt(dx*dx + dy*dy + dz*dz);

}

3/4 2 April 2019 | art news



art::Ptrs (1)
art::Ptrs provide a persistable means of referring to product elements. They are expensive. If
you do not need to persist a reference, do not use an art::Ptr. Recently discovered in code:

double dist(art::Ptr<Pos> const& a, art::Ptr<Pos> const& b) {
double const dx = b->x - a->x; // 2 expensive dereferences
double const dy = b->y - a->y; // 2 more expensive dereferences
double const dz = b->z - a->z; // Yet 2 more expensive dereferences
return std::sqrt(dx*dx + dy*dy + dz*dz);

}

Better:

double dist(art::Ptr<Pos> const& a, art::Ptr<Pos> const& b) {
auto const& a_pos = *a; // 1 expensive dereference
auto const& b_pos = *b; // 1 expensive dereference
double const dx = b_pos.x - a_pos.x;
double const dy = b_pos.y - a_pos.y;
double const dz = b_pos.z - a_pos.z;
return std::sqrt(dx*dx + dy*dy + dz*dz);

}

3/4 2 April 2019 | art news



art::Ptrs (2)
art::Ptrs provide a persistable means of referring to product elements. They are expensive. If
you do not need to persist a reference, do not use an art::Ptr. Recently discovered in code:

double dist(art::Ptr<Pos> const& a, art::Ptr<Pos> const& b) {
double const dx = b->x - a->x; // 2 expensive dereferences
double const dy = b->y - a->y; // 2 more expensive dereferences
double const dz = b->z - a->z; // Yet 2 more expensive dereferences
return std::sqrt(dx*dx + dy*dy + dz*dz);

}

The best option is to not use art::Ptrs at all:

double dist(Pos const& a, Pos const& b) {
double const dx = b.x - a.x;
double const dy = b.y - a.y;
double const dz = b.z - a.z;
return std::sqrt(dx*dx + dy*dy + dz*dz);

}

4/4 2 April 2019 | art news


